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Abstract. This paper deals with the development of a computational algorithm for fault
classification in gearbox, using acoustical noise. This system was set up to recognise three
different patterns independently of the gearbox shaft speed. A Neural Network systemis used
for this purpose. Two different types of convergence algorithm for the training phase, namely
the conjugate gradient and Marquardt, are compared. Concerning the classification task, two
different strategies are described and adopted. As pre-processing methods we used a
combination of two dtatistical parameters (rms and kurtosis), and a spectral representation.
The results show that is possible to obtain a very high reliability network system to
classification purpose.
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1. INTRODUCTION

The monitoring of faults occurrence in gearboxes is important for gearbox design and
maintenance. In general these faults generate non-stationary multicomponent signals. Several
methods of non-destructive monitoring are available for this purpose (vibration, acoustical
emission, temperature, etc.). The most popular way of accomplishing this task is vibration
analysis. Acoustical noise can also be used for characterisation of defects problems (Braun,
1986).

Non-stationary process can only be correctly analysed by time-frequency (Silva, A. A.,
1999, Oehlmann, et al 1997) or time-scale (wavelets) methods (Paya, et al 1997), but classical
spectral representation (Fourier base methods) and statistical methods can also give good
representation of the fault signature, depending on the objective of the analysis.

For improving the fault identification and in order to provide an automatic fault
classification, neural networks have been widely used in mechanical engineering area, in the
last years (Staszweski et al, 1997, Schurmann, 1996).

This method can offer an attractive, robust and efficient mean for automation of the
classification methodology in conditional monitoring, with applications concerning quality
control and predictive maintenance, for example.

An experimental set-up is used to collect acoustical noise data in this study. The two fault
patterns used represent local and distributed fault types in spur gears.



The neural network, algorithms of convergence and classification methodology are
described. Two kinds of pre-processing methods are used, the statistical and spectral methods.

The results obtained show that simpler pre-processing methods may give excellent
results.

2. THE EXPERIMENTAL SYSTEM

The experimental system is composed by an AC motor that drives a gearbox with two
reduction spur gear stages, an inverter for shaft speed control, and a Prony brake that
generates 60% of the nominal torsion effort specified for the system motor. The faults were
produced in the 31 teeth pinion of the first stage, meshing with a 55 teeth gear. These faults
were chosen in order to simulate two principal fault sets commonly found in this type of
gearbox: partial or total loose of a tooth (local faults) or else contact surface wear in severa
teeth (distributed faults). In this context three fault pattern types were used: a faultless gear
(named normal gear), atooth-missed gear (named toothless gear) and a gear with pronounced
wear in contact surfaces in ten of the teeth (named scratched gear).

The collect data concerns 6 different motor speed values in the interval 400-1400 rpm,
with a 200 rpm speed step.

For each fault pattern and shaft speed, an accelerometer (B&K 4393), placed at the
vertical direction of the pinion bearing housing, measures vibration signals. At the same time
acoustical noise is obtained by a pressure microphone (B&K 4165) placed in front of the
pinion location. Both vibration and acoustical signals were low-pass filtered with a cut-off
frequency of 2 kHz and sampled with a sampling rate of 5.12 kHz. For each measurement 18
samples of the same signal were obtained. Consequently the database is composed of 324
vibration and acoustical signals.

This database was used to train neural networks as described below.

3. NEURAL NETWORKS

The neural network used in this study is a Multilayer Perceptron (MLP) one. The network
characteristics are described in the following items.

3.1 Thenetwork topology

Aninput layer, one or more hidden layers and the output layer form the network topology
of a generic MLP. Only the hidden and output are processing layers. The activation function
used in the hidden layer is a hyperbolic tangent sigmoid function and the output layer is a
linear one. The dimension of the feature vectors or input vectors dictates the dimension of the
first layer. The number of elements in the output layer is defined by the dimension of the
pattern space or target vectors (dictated by the number of patterns - or faults - to be
classified).

Meanwhile the dimensions of the first and last layer are defined by the classification task,
there are no rules for determine the hidden layer. Kung (1993) shows that the same results can
be achieved by only one layer if an appropriated number of processing neurones is used for
unique hidden layer. In the same manner, there is not a unique acceptable rule for establishing
the optimum dimension of the hidden layer. Hecht-Nielsen (1990) proposes the maximum
number of elements in the hidden layer to be twice the input layer dimension plus one. Maren
et al. (1990) propose the geometric average between the input and output vectors dimension
to be used as the number of elements of the hidden layer, while Baum et al. (1989) suggest



the dimension VC (Vapnik-Chervonenkis), that depends on an specified generalisation error,
for calculating the hidden layer dimension.

Experience shows that in general these rules give only some indication for the hidden
layer dimension. In practice, atrial and error method needs to be adopted.

3.2 Thelearning algorithm

The backpropagation (Kung 1993; Freeman et al. 1991) is the learning algorithm used in
the MLP. In order to train the MLP to classify any particular set of patterns, it is necessary to
have available corresponding pairs of desired inputs and outputs (targets). The input feature
presented to the MLP input layer progresses forward through the hidden layers and emerges
through the output layer. Then a backpropagation algorithm is used for minimising the sum-
squared error between the targets and the outputs calculated by the network. The same
procedure is repeated for each element of the input feature set. This is known as the training
or learning phase.

There are several methods for accelerating the convergence of the training work, always
looking for the minimisation of the sum-squared error. One of then is the popular gradient
descent agorithm (Freeman et al. 1991), recognised by the learning rate parameter which may
also be used with a momentum term to improve the convergence.

Another approach is focused on standard numerical optimisation techniques. The most
popular is the conjugate gradient Fletcher-Reeves (CGFR) method (Press et al. 1994). This
method can be used to minimise objective functions like non-linear least squares functions,
that is, the sum squared error function of the network. Hagan et al. (1994), proposed a
modification for this technique, named Marquardt algorithm (MA) to be incorporated into the
backpropagation learning algorithm.

In the present study, we chose to use these last two methods, motivated by their better
performance when compared to that of the gradient descent algorithm.

3.3 Thetraining methodology

The goal in the training phase is to obtain a neural network with a good generalisation
level. In general the error level controls this characteristic. But a low error level itself doesn’t
necessarily imply a good generalisation. This error level can be driven to a minimum value on
the training phase, but when a new data is presented to the trained MLP, the error may
eventually be large. In this case we can say that a good memorisation of the training examples
was accomplished, but the network has not learned to generalise new situations.

For this reason, we don’'t use in this work the error control to establish a good
generalisation. Independently of the error level obtained in a training section, the
generalisation is controlled by the network performance in recognising a test signal set. For
each training task we fixed the number of iteration in the convergence algorithm and then, a
set of signal tests was presented to the network. The percentage of hits is our generalisation
index.

From the overall signal database, 20% is reserved to this set of tests. The other 80%
belong to the training set. Both, training and test databases, were assembled with statistical
care, in order to obtain a uniform representation of the parameters used in the experimental
phase, namely shaft speed and fault type.

Several factors may contribute to increase the generalisation level. One of them is the
network complexity or network dimension, that is, the hidden layer dimension. As mentioned
above, atrial and error method was used for this purpose.



Another factor that improves the generalisation level is the fault representation (input
features) quality. This can be achieved by convenient signal processing of the input signal.
Two kinds of features were used to model the fault signatures in the signal set, as described
below.

3.4 Theclassification strategy

The classification goal is the identification of three patterns of fault independently of
shaft speed. For achieving this objective, two approaches were developed, the general strategy
and cascade strategy. For the first case, the generic network, only one network was trained to
classify the three patterns. This network would have to recognise all the patterns
independently of the shaft speed.

For the second strategy, seven networks were used. One of the networks was trained to
classify the input features by regarding the shaft speed. The other six were trained to classify
the fault patterns, one for each shaft speed. So, after passing through the first network, a
signal to be classified would follow into one of the other six, depending on the shaft speed
determined by the first network.

Figure 1 illustrates these classification strategies.

The main difference between these two ways is the classification complexity required by
the different networks. In the general strategy this complexity is much greater than in the
cascade strategy. Consequently the computational effort, topology, dimension of the training
set, are greater in general strategy, and the quality of the feature description needs also to be
better.
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Figure 1 — Thetwo classification strategy: a) the general and b) the cascade classification
strategy

4. THE PRE PROCESSING PHASE

The pre-processing phase has a main double objective that is to provide the best feature
representation of each fault pattern with the smallest input vector size (to decrease the RNA
complexity and computational effort).

Two groups of signal processing methods were used, statistical and spectral analysis.



4.1 Thedatigtical analysis

All random signals s(t), used in this work have the same time duration D, and were
centred, that is, they all have zero means values (1%. statistical moment is null).

For each signal, the 2., 3% and 4™. statistical moments, respectively named rms,
Skewness and Kurtosis were calculated as well as the probability density function (PDF).

The rms of the signal is defined by:

I’mSZW/%J;DS(t)Zdt =+/Mean Power =0 (1)

This statistical moment can be regarded as a measure of the signal power, as well as its
standard deviation o.
The 3 and 4™ statistical moments are defined by:

_ 1 N
m =< > SO (2

where N is the signal number of points, and the constant r has the value 3 for the 3 moment
and 4 for the 4™ moment.

The Skewness, is a 3. statistical moment, and it represents a measure of the asymmetry
of the signal PDF, in relation to the Gaussian Distribution:

The Kurtosis, K, is the 4". statistical moment, and may be seen as a measure of the
flatness or extent of the signal PDF in relation to the Gaussian Distribution:

It was noticed, for rolling bearings that the Kurtosis can be a good fault detection tool for
incipient faults and low shaft speed. For the rms case it can also be a good fault detection,
only for an advanced damage stage (Silva, 1999). Martins & Gerges (1985), and more
recently Silva ( 1999), proposed a combination of these two parameters, K; and rms, with the
objective of meshing both gatistical qualities, given by:

K =K, Oms 3)

Figure 2 shows the rms, K; and K parameters for the three fault patterns (normal,
toothless and scratched gear) as function of the shaft speed. For each curve it is indicated the
standard deviation of the parameter, calculated over 54 signals collected for each fault pattern.

As it can be seen in Fig. 2, the K parameter allows separating the three fault patterns into
three distinct classes. The Kurtosis has a multiplier effect over the rms.

Figure 3,presents an example of a PDF of the acoustical signal for the three pattern faults,
at a shaft speed of 1000 rpm. Each PDF was normalised keeping the area under each curve
equal to unit. This graphical pattern is analogous to PDFs coming from different shaft speeds.
In all them, the scratched gear PDF pattern is very different from the others. The normal and
toothless gears are similar in shape.
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Figure 2 —rms, K; and K for acougtical signals coming from three fault patterns: normal (solid
line), toothless (dashed line) and scratched gear (dotted line) as function of the shaft speed.
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Figure 3 — PDF of the acoustical signals from three faults pattern: normal (solid line),
toothless (dot line) and scratched gear (dashed line), for a shaft speed of 1000 rpm.

4.2 The spectral analysis

The Power Spectral Density (PSD) of the acoustic signals was obtained with the Welch
method (Proakis, Manolakis, 1996). Each spectral representation is a result of an average of

10 spectra.



Figure 4 shows 3-dimensional graphics for each fault. The PSD is plotted for each one of
the 6 shaft speeds. The scale bar, on the right side, is an amplitude scale for the PSD
representation.

In al of the three graphics it’s possible to distinguish two classes of spectral patterns.
One of them is seen as a constant spectral pattern do not changing with the shaft speed. The
other spectral pattern depends on the shaft speed in a linear way, increasing with decreasing
shaft speed. Thereisn't anet distinction among the three spectral representations.

Asit seen in Fig. 2 (rms graphic) the maximum power signal occurs for the normal gear,
then, in a decreasing way, for the toothless gear, and finally, the lowest power signal
corresponds to the scratched gear. Regarding to Fig. 4, a the maximum of the amplitude
scales, it is possible to observe this same pattern. The sguare root of the integration of each
signal over the frequency domain results in the same mean power estimation, or rms, as
defined by Eq. (1).
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Figure 4 — Graphical 3D representation of the acoustical spectra against the shaft speed
variation.

The input spectral vectors have 81 points, with a frequency band of 50 - 250 Hz, and
sampling frequency of 512 Hz. The frequency resolution is 2.5 Hz.

5. RESULTSAND DISCUSSION

For neural networks training purposes two input features vectors are used: the K
parameter and the spectral representation.

The number of interactionsin all training sections was set to 500. For all results presented
below, the sum-squared error was smaller than 107,



Table 1 shows the principal results of the generic network training. The first column
presents the input features used. The Skewness was also utilised, but as the results obtained
were very poor they are not mentioned in thistext.

Table 1. Results for the generic network.

Input feature | Network topology | Best generalisation | Convergence algorithm
[worst Q]
K 1x10x2 90% (48/54) CGRF good
[37%] MA good
Spectra 81lx20x2 100 % (54/54) CGRF good
[21%] MA bad

The topology with which the better results were obtained is presented in the second
column. Several dimensions for the hidden layer were used, in atrial and error method. Then
the presented topology may not be optimum. The output dimension was obtained by
codification of the three fault patterns, that is (0.5, 0.5) for the normal gear, (-0.5, 0.5) for the
toothless gear and (-0.5, —0.5) for the scratched gear. Consequently, the three target patterns
are distributed in three quadrants.

The best results obtained for each one of the input features are given in the third column.
It isalso indicated in parenthesis, the number of hits over the dimension of the database test.

It is assumed that if a calculated pattern falls in the correspondent quadrant, it is correctly
classified; and its classification quality is evaluated by the distance between the code
calculated by the network and the target code, given by:

oo (E-cT +b-cF

2 2
C, +C,

x100 (4)

where (a, b) is the calculated code, and (c1, C;) is the correspondingly target code. The
parameter quality Q represents the distance in percentage between the target and the
calculated code. It is also presented in brackets in the third column, the worgt value for the
parameter Q.

Regarding to Fig. 2 and Fig. 4, it seems that the K parameter is a better feature, but the
results presented in the third column show the opposite. The spectra feature gives the best
result.

In column four, it is indicated the performance of two convergence algorithm: the CGRF,
conjugate gradient algorithm and the MA, Marquardt algorithm. Fast convergence was
obtained with both as well as good level of generalisation, for the network of small
complexity. For bigger networks, the timing convergence in the case of the MA algorithm is
very low, and the results worse.

The gradient descent algorithm was also used for performance comparison. As it is a
parametric method (it is necessary to give the learning rate and momentum parameter) its
performance is very low when compared with the CGRF and MA methods.

Table 2 shows the principal results for the first network layer of the cascade strategy.

For shaft speed classification the best input feature was the spectra representation. It was
not possible to obtain any reasonable result with the K parameter. The reason is that this
parameter doesn’t provide class distinction, for the different shaft speeds. Figure 2 shows this
fact. Again, the MA algorithm gave worse results when compared to the CGRF algorithm, for
the spectrainput feature case. A codification of dimension three was used in this network.



Table 2. Results for the first network layer of the cascade network system.

First Network
Shaft speed classification

I nput Network Best Convergence

Features | Topology Generalisation Algorithm
[Q]
K 1xnx3 Not occur -
Spectra | 81x20x 3 98% (53/54) CGRF good
[32%] MA bad

Table 3 resumes the results of the training task for the six networks of the cascade
strategy (one for each shaft speed). Each of them was trained to recognise the three fault
patterns. For each type of input features, all the six networks have the same topology. Again,
the best results were obtained with the spectra feature. It was obtained 100% of hits for al the
six networks, and again the performance of the MA algorithm decrease with the increasing of
the network complexity.

Table 3. Results for the second network layer of the cascade network system.

Second Network
Fault classification for each shaft speed
I nput Network Best and worst Convergence
Features | topology Generalisation Algorithm
[Q]
K 1x5x2 100 %— 94% CGRF good
(18/18) — (17/18) MA good
[46%0]
Spectra | 81x10x2 | 100 % (18/18) CGRF good
[37%] MA bad

6. CONCLUSION

The results show that it is possible to obtain a very high reliability classification system
to diagnose fault types in a gearbox, using acoustical noise. Environmental noise added to the
acoustical noise emitted by the gearbox can degrade this performance, and this effect needs to
be studied yet.

The input feature type is determinant for a good network generalisation. The methods
used to pre-process the data, K parameter and spectra representation, give good results with a
better performance for the spectra representation.

The choice of the convergence algorithm is also important. Three algorithms were used in
this study. The gradient descent is a parametric algorithm. Two parameters have to be given in
this case, the learning and momentum parameters. The performance was the worg for this
algorithm. In the case of small network complexity the performance of the two others (the
conjugate gradient and the Marquardt algorithms) were comparable. But for networks with a
higher complexity the performance of MA algorithm is very poor.



The classification strategy can also influence the network characterisation. The cascade
strategy gave better results, in generalisation level. Its smaller classification complexity
contributes for this resullt.
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